FROM AMATEUR MUSICIANSHIP TO COMPUTATIONAL PREDICTORS OF MEDIA CONSUMPTION EXPERIENCES

MARKO TKALČIČ

UNIVERSITY OF PRIMORSKA,

FACULTY OF MATHEMATICS, NATURAL SCIENCES AND INFORMATION TECHNOLOGY, KOPER, SLOVENIA

MARKO.TKALCIC@GMAIL.COM

HTTP://MARKOTKALCIC.COM/

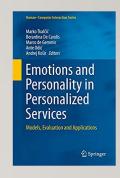
2 ABOUT ME

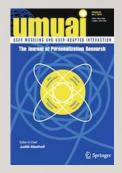
- Associate Professor of Computer Science at the University of Primorska in Koper, Slovenia
 - Assist. Prof. at Free University of Bolzano, Italy
 - Postdoc at JKU Linz, Austria
 - PhD at University of Ljubljana

 I aim at improving personalized services (e.g. recommender systems) through the usage of psychological models in personalization algorithms. To achieve this, I use diverse research methodologies, including data mining, machine learning, and user studies.

3 ABOUT ME

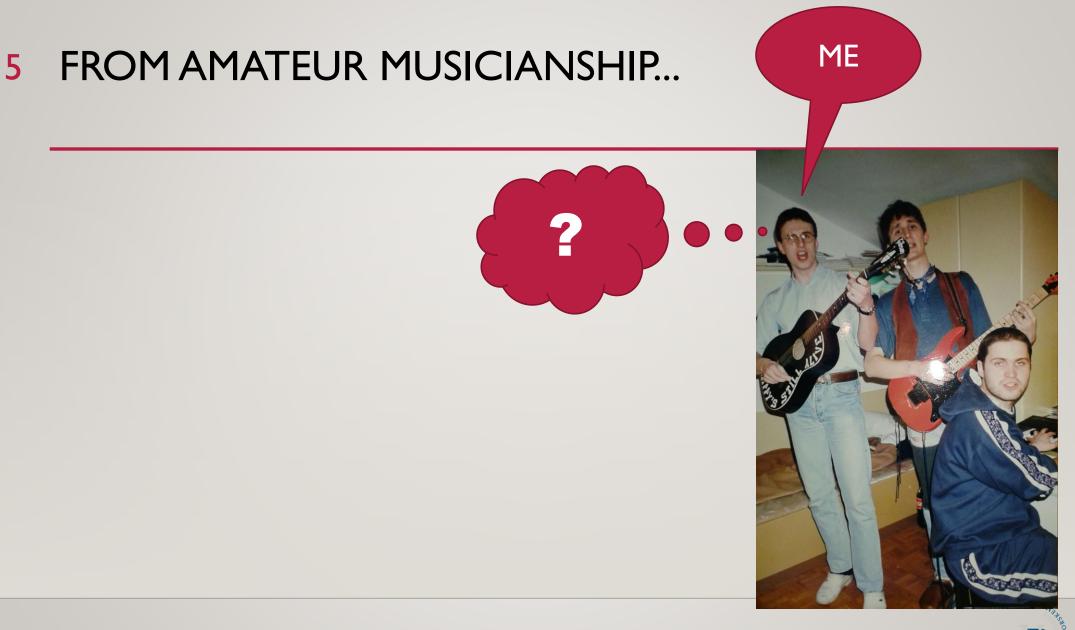
- Book co-editor, Emotions and Personality in Personalized Services, 2016 <u>https://www.springer.com/gp/book/9783319314112</u>
- Editorial board member:
 - Springer User Modeling and User-adapted Interaction,
 - Frontiers in Computer Science
 - Frontiers in Psychology
- Program Chair at the ACM UMAP 2021 conference
- Active in the RecSys and UMAP communities





4 FROM AMATEUR MUSICIANSHIP...

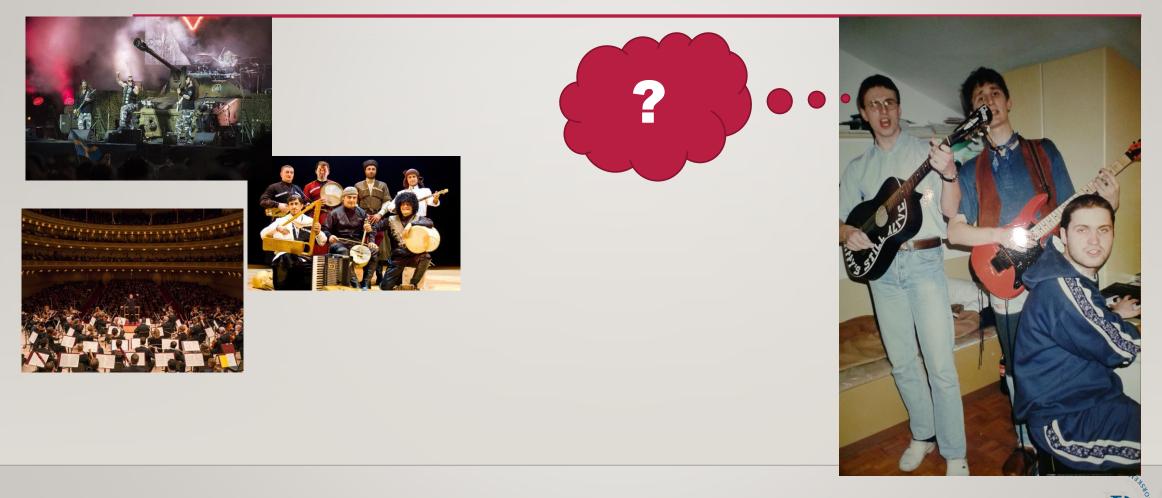
ME



IntRS Workshop Keynote, RecSys 2023

UNIVERT

6 FROM AMATEUR MUSICIANSHIP...



famnit

UNIVER

FROM AMATEUR MUSICIANSHIP... 7

UNIVERL

8 ISSUE IN CONTEMPORARY USER MODELING

- Majority of user modelling for recommender system uses behavioural data
- Behaviour (implicit data) is only part of the knowledge about users in recommender systems
 - Cognitive models are important, too
- Two stories
 - Netflix
 - La vita e' bella

9 INSPIRATION

Behaviorism is Not Enough: Better Recommendations through Listening to Users

Michael D. Ekstrand^{1,2} and Martijn C. Willemsen³

¹Dept. of Computer Science Texas State University San Marcos, TX USA ²Dept. of Computer Science Boise State University Boise, ID USA michaelekstrand@ boisestate.edu ³Human-Technology Interaction Group School of Innovation Sciences Eindhoven University of Technology Eindhoven, The Netherlands M.C.Willemsen@tue.nl

10 WHY DO WE CONSUME CONTENT? MOOD REGULATION

	Mean rating (SD)
Positive mood management (e.g., to set the 'right' mood)	7.90 (1.52)
Diversion (e.g., to pass the time)	6.43 (2.04)
Negative mood management (e.g., to make me feel better)	6.36 (1.96)
Interpersonal relationships (e.g., to have something to talk about with others)	3.54 (2.02)
Personal identity (e.g., to create an image for myself)	2.89 (2.10)
Surveillance (e.g., to learn how other people think)	2.33 (1.73)

Lonsdale, A. J., and North, A. C. (2011). Why do we listen to music? A uses and gratifications analysis. British Journal of Psychology (London, England : 1953), 102(1), 108–34. https://doi.org/10.1348/000712610X506831

famnit

UNIVER

Oliver, M. B. (2008). Tender affective states as predictors of entertainment preference. Journal of Communication, 58(1), 40–61. https://doi.org/10.1111/j.1460-2466.2007.00373.x

II I-THE NETFLIX STORY

- Neil Hunt (Netflix), Keynote at RecSys 2014 : Quantifying the Value of Better Recommendations*:
 - We optimize for hours of viewing...
 - ...but all hours are not equal
 - Addiction
 - Compelling
 - We might be optimizing for addiction over compelling
 - How to qualify the viewing hours?

We optimize *hours of viewing*... But all hours are not created equal Implication: • We machine-learn *addictive* over *compelling* • Partly innoculated by also measuring retention But all H What signal can we find for *valued* hole • Part

*https://youtu.be/IYcDR8z-rRY?t=4727

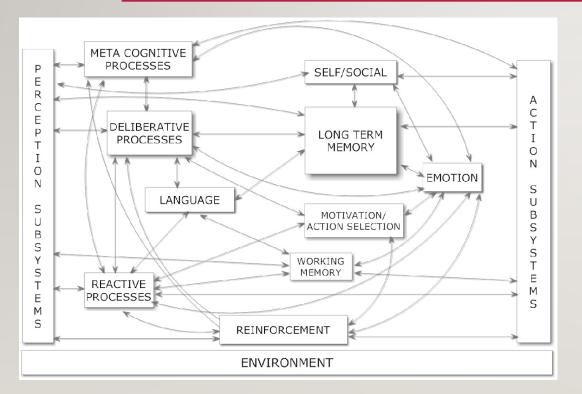
12 2-THE "LIFE IS BEAUTIFUL (1997)" STORY



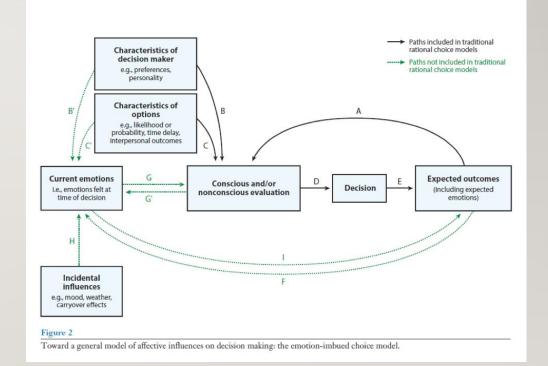
- Funny (hedonic quality)
- Tragic (eudaimonic quality)

- What does thumbs up mean?
 - Liked the jokes?
 - Moved by the drama?

13 EXISTING MODELS OF MIND, COGNITION, DECISION MAKING



Goertzel, Ben, Matt Iklé, and Jared Wigmore. "The architecture of human-like general intelligence." *Theoretical Foundations of Artificial General Intelligence*. Atlantis Press, Paris, 2012. 123-144.



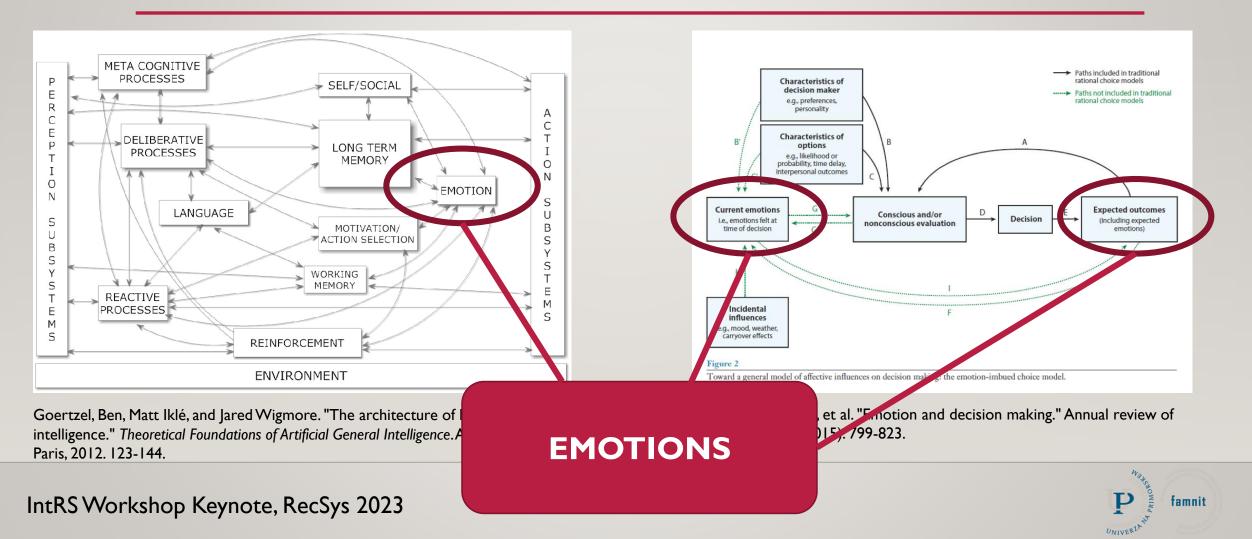
Lerner, Jennifer S., et al. "Emotion and decision making." Annual review of psychology 66 (2015): 799-823.

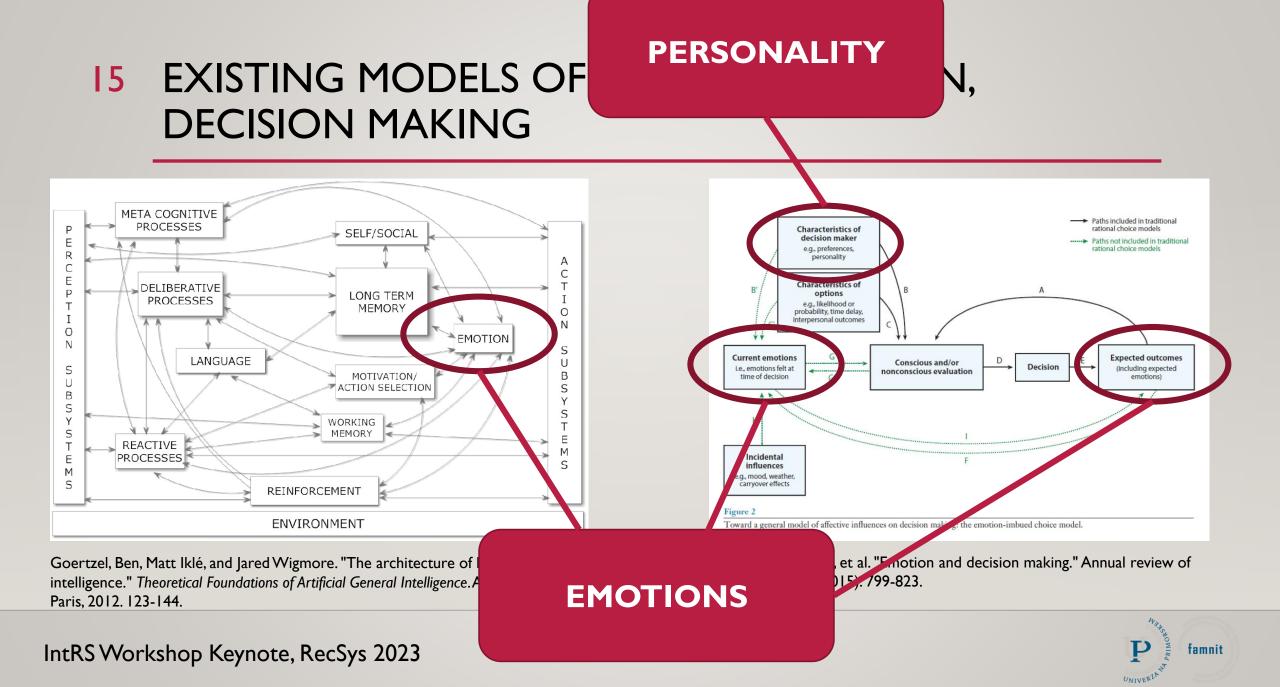
P

UNIVERZA

famnit

14 EXISTING MODELS OF MIND, COGNITION, DECISION MAKING





I6 OUTLINE

- Personality and Emotions in RecSys
- Current: Positive Psychology in RecSys
- Conclusion

17 OUTLINE

- Personality and Emotions in RecSys
- Current: Positive Psychology in RecSys
- Conclusion



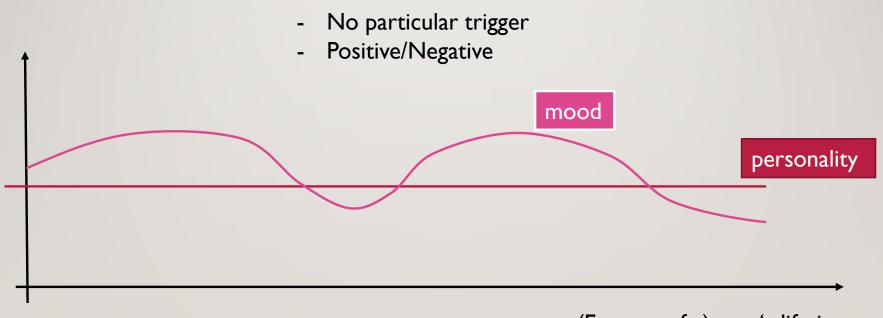
Five Factor Model:

- Openness to new experiences
- Conscientiousness
- Extraversion
- Agreeableness
- Neuroticism

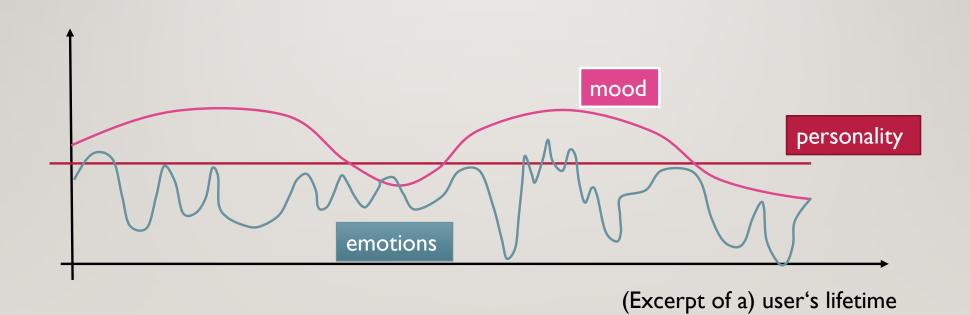
personality

(Excerpt of a) user's lifetime

(Excerpt of a) user's lifetime



(Excerpt of a) user's lifetime



- Triggered
- Discrete emotions (anger, disgust, fear, happiness, sadness, surprise)
- Dimensional model (valence, arousal, dominance)

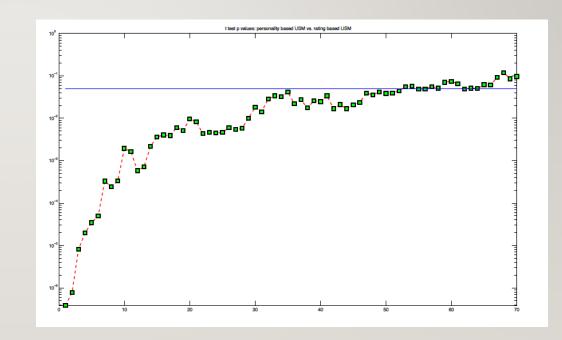
(Excerpt of a) user's lifetime

24 USAGE OF PERSONALITY AND EMOTIONS FOR BETTER RECOMMENDATIONS

- Personality:
 - New-user problem (user similarity)
 - Preferences
 - Acquisition
- Emotions:
 - Emotions as feedback
 - Acquisition

25 PERSONALITY AS USER SIMILARITY I

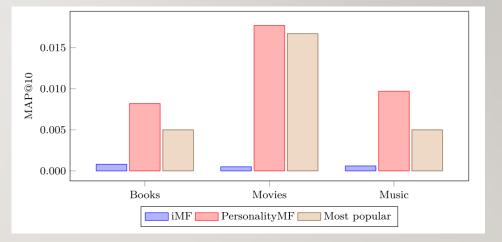
- New user problem
- N = 52, images = 70
- User similarities
 - Rating-based
 - Personality-based
- Rating-based catches the personality only after 40 ratings have been entered



Tkalčič, M., Kunaver, M., Košir, A., and Tasič, J. (2011). Addressing the new user problem with a personality based user similarity measure. In UMMS 2011 proceedings

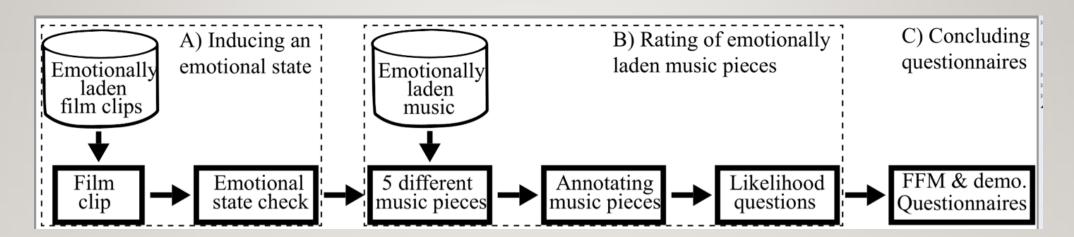
26 PERSONALITY AS USER SIMILARITY II - IN MATRIX FACTORIZATION

- In (Elahi et al., 2013) Injection of personality factors in MF as additional features
 - $r_{ui} = q_i(p_u + \sum_{a \in A(u)} y_a)$
 - personality u = (2.3,4.0,3.6,5.0,1.2) maps to A(u) = {ope2, con4, ext4, agr5, neul}.



Elahi, M., Braunhofer, M., Ricci, F., and Tkalčič, M. (2013). Personality-based active learning for collaborative filtering recommender systems. In M. Baldoni, C. Baroglio, G. Boella, and O. Micalizio (Eds.), Al*IA 2013: Advances in Artificial Intelligence (pp. 360–371).

27 PERSONALITY FOR MOOD REGULATION



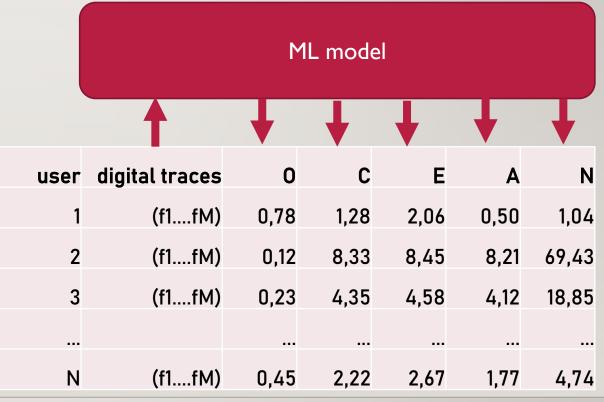
- High on openness, extraversion, and agreeableness more inclined to listen to happy music when they are feeling sad.
- High on neuroticism listen to more sad songs when feeling

B. Ferwerda, M. Schedl, and M. Tkalcic, "Personality & Emotional States : Understanding Users' Music Listening Needs," in UMAP 2015 Extended Proceedings, 2015.

- Questionnaires
 - BFI: 44 questions
 - TIPI: 10 questions
 - NEO-IPIP: 300 questions

• Questionnaires

- BFI: 44 questions
- TIPI: 10 questions
- NEO-IPIP: 300 questions
- Unobtrusive prediction:
 - Self-reported Personality
 - User Social Media Digital Traces
 - Instagram
 - Twitter



• From Instagram

	Ο	\mathbf{C}	\mathbf{E}	Α	Ν
Red	-0.06	0.02	-0.17°	-0.05	0.03
Green	0.17°	0.14	0.23^{-1}	0.03	-0.12
Blue	-0.01	0	0.17°	0.02	-0.01
Yellow	0.01	0.04	0.01	0.14	-0.07
Orange	-0.03	-0.07	-0.16°	-0.02	0.06
Violet	0	-0.06	-0.09	-0.07	0.06
Bright.mean	-0.25*	-0.1	-0.19°	-0.07	0.22°
Bright.var.	0.06	0	0	-0.07	0.05
Bright.low	0.28^{**}	0.09	0.16°	-0.05	-0.16°
$\operatorname{Bright.mid}$	-0.09	0.06	0.04	0.15°	-0.06
$\operatorname{Bright.high}$	$-0.2^{}$	-0.12	-0.18^	-0.08	0.21°
Sat.mean	0.16°	0.06	0.03	-0.04	0
Sat.var.	0.2^{-1}	0.16°	$0.19^{}$	0.1	-0.05
Sat.low	-0.08	-0.02	0.02	0.07	0.01
$\operatorname{Sat.mid}$	0.08	-0.09	0.02	0.07	0.01
$\operatorname{Sat.high}$	0.13	0.1	0.04	-0.01	0.01
Warm	-0.05^{-1}	-0.04	-0.2	0	0.03
Cold	0.05^{-1}	0.04	0.2	0	-0.03
Pleasure	-0.19^^	-0.08	-0.18^	-0.09	$0.22^{}$
Arousal	0.23^{*}	0.09	0.1	0	-0.08
Dominance	0.28^{**}	0.11	0.17°	0.05	-0.18^^
# of faces	-0.16°	0.03	0.11	-0.11	-0.03
# of people	$-0.22^{}$	-0.05	-0.07	-0.01	0.07
Note	$a^{n} < 0.1$	$^{n} < 05$	*n < 01 *	**n < 0.01	

Note. p < 0.1, p < .05, p < .01, p < .001.

Ferwerda, Bruce, Markus Schedl, and Marko Tkalčič. 'Using Instagram Picture Features to Predict Users' Personality'. In *MultiMedia Modeling*, edited by Qi Tian, Nicu Sebe, Guo-Jun Qi, Benoit Huet, Richang Hong, and Xueliang Liu, 9516:850–61. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016. <u>https://doi.org/10.1007/978-3-319-27671-7_71</u>.

• From Instagram and Twitter

	RMSE		\mathbf{MAE}		\mathbf{PCC}	
	\mathbf{T} [7]	$\mathbf{T}_{\mathrm{lm}}\mathbf{I}_{\mathrm{li}}$	\mathbf{T} [2]	$\mathbf{T}_{\mathrm{lm}}\mathbf{I}_{\mathrm{li}}$	\mathbf{FB} [4]	$\mathbf{T}_{\mathrm{lm}}\mathbf{I}_{\mathrm{li}}$
0	0.69	0.51	0.12	0.11	0.43	0.74
\mathbf{C}	0.76	0.67	0.14	0.11	0.29	0.76
${ m E}$	0.88	0.71	0.16	0.17	0.40	0.65
А	0.79	0.50	0.12	0.12	0.30	0.34
Ν	0.85	0.73	0.19	0.16	0.30	0.71
AVG	0.79	0.73	0.15	0.13	0.30	0.64

Table 2: Personality traits regression accuracy of $T_{lm}I_{li}$ along the state-of-the-art systems inferred from different SNSs: (T)witter, (I)nstagram, FB - Facebook, in terms of RMSE, MAE - Mean Absolute Error, PCC - Pearson Correlation Coefficient.

Skowron, Marcin, Marko Tkalčič, Bruce Ferwerda, and Markus Schedl. 'Fusing Social Media Cues: Personality Prediction from Twitter and Instagram'. In Proceedings of the 25th International Conference Companion on World Wide Web - WWW '16 Companion, 2016. https://doi.org/10.1145/2872518.2889368.

32 PERSONALITY PRED

• From Instagram and Twitter

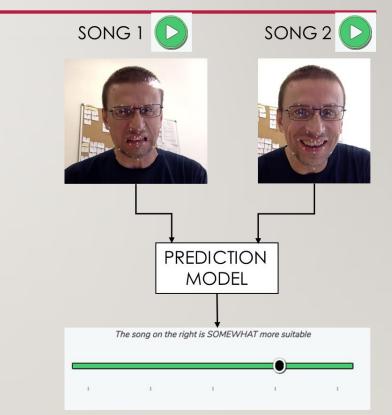
Azucar, Danny, Davide Marengo, and Michele Settanni. 'Predicting the Big 5 Personality Traits from Digital Footprints on Social Media: A Meta-Analysis'. *Personality and Individual Differences* 124 (April 2018): 150–59. https://doi.org/10.1016/j.paid.2017.12.018.

33 USAGE OF PERSONALITY AND EMOTIONS FOR BETTER RECOMMENDATIONS

- Personality:
 - New-user problem (user similarity)
 - Preferences
 - Acquisition
- Emotions:
 - Emotions as feedback
 - Acquisition

34 EMOTIONS AS FEEDBACK

- Pairwise music preferences
- Differences in emotions predict the preferences
 - Contempt
 - Valence
 - Joy
 - Sadness



famnit

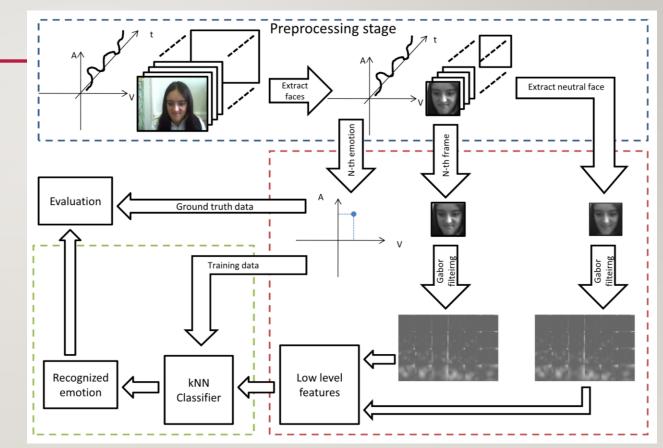
UNIVER

Tkalčič, M., Maleki, N., Pesek, M., Elahi, M., Ricci, F., & Marolt, M. (2019). Prediction of music pairwise preferences from facial expressions. Proceedings of the 24th International Conference on Intelligent User Interfaces - IUI '19, 150–159. https://doi.org/10.1145/3301275.3302266

35 EMOTION PREDICTION

- Questionnaires
- Multimodal prediction:
 - Modalities: Audio, language, visual, physiology

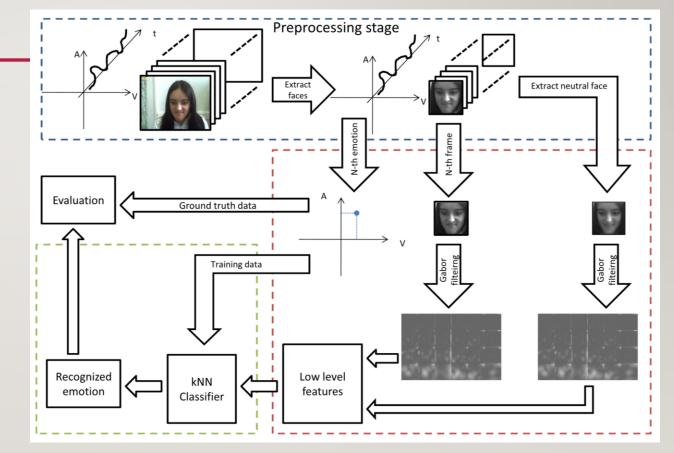
36 EMOTION PREDICTION VALIDATION



Tkalčič, Marko, Ante Odić, and Andrej Košir. 'The Impact of Weak Ground Truth and Facial Expressiveness on Affect Detection Accuracy from Time-Continuous Videos of Facial Expressions'. Information Sciences 249 (November 2013): 13–23. https://doi.org/10.1016/j.ins.2013.06.006.

37 EMOTION PREDICTION VALIDATION

• Off-the shelf DL-based predictive models (Affectiva...)



famnit

UNIVERT

Tkalčič, Marko, Ante Odić, and Andrej Košir. 'The Impact of Weak Ground Truth and Facial Expressiveness on Affect Detection Accuracy from Time-Continuous Videos of Facial Expressions'. Information Sciences 249 (November 2013): 13–23. https://doi.org/10.1016/j.ins.2013.06.006.

38 OUTLINE

- Personality and Emotions in RecSys
- Current: Positive Psychology in RecSys
- Conclusion

HEDONIA/EUDAIMONIA

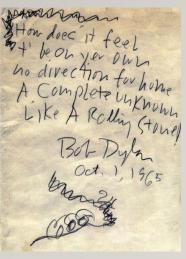
HEDONIA/EUDAIMONIA

40	<complex-block></complex-block>	<complex-block></complex-block>	<text></text>
HEDONIC			
EUDAIMONIC		$\overline{\mathbf{\otimes}}$	
DETER			
PETER			
PAUL			
MARY			
JOAN			
IntRS Workshop Keynote, R	lecSys 2023		P famnit

UNIVERZA

41 CURRENT RESEARCH

• Challenges:

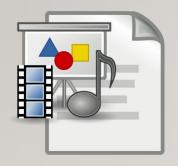


- Unobtrusive acquisition of item characteristics
 - Music: Lyrics (Hrustanović, S., Kavšek, B., & Tkalčič, M. (2021). Recognition of Eudaimonic and Hedonic Qualities from Song Lyrics. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 9.)
 - Movies: Subtitles (Motamedi, E., & Tkalcic, M. (2021). Prediction of Eudaimonic and Hedonic Movie Characteristics From Subtitles. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 8.)
 - Movies: Multi-modal (Motamedi, Kholg, Saghari, Elahi, Barile, Tkalčič)) Predicting Movies' Eudaimonic and Hedonic Scores: A Machine Learning Approach Using Metadata, Audio and Visual Features (IPM, under review)
- Unobtrusive acquisition of user characteristics
 - Movies: From rating behavior (Motamedi, Elham, Francesco Barile, and Marko Tkalčič. 'Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers'. Applied Sciences 12, no. 19 (22 September 2022): 9500. <u>https://doi.org/10.3390/app12199500</u>.)
 - Music:TBD
- Efficient prediction of the user experience:
 - Music: Motamedi, E., Tkalcic, M., & Szlávik, Z. (2023). Eudaimonic and Hedonic Qualities as Predictors of Music Videos' Relevance to Users: A Human-Centric Study. Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization, 44–49. <u>https://doi.org/10.1145/3563359.3597415</u>

42 CURRENT RESEARCH

• Challenges:

Unobtrusive acquisition of item characteristics



- Music: Lyrics (Hrustanović, S., Kavšek, B., & Tkalčič, M. (2021). Recognition of Eudaimonic and Hedonic Qualities from Song Lyrics. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 9.)
- Movies: Subtitles (Motamedi, E., & Tkalcic, M. (2021). Prediction of Eudaimonic and Hedonic Movie Characteristics From Subtitles. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 8.)
- Movies: Multi-modal (Motamedi, Kholg, Saghari, Elahi, Barile, Tkalčič)) Predicting Movies' Eudaimonic and Hedonic Scores: A Machine Learning Approach Using Metadata, Audio and Visual Features (IPM, under review)
- Unobtrusive acquisition of user characteristics
 - Movies: From rating behavior (Motamedi, Elham, Francesco Barile, and Marko Tkalčič. 'Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers'. Applied Sciences 12, no. 19 (22 September 2022): 9500. <u>https://doi.org/10.3390/app12199500</u>.)
 - Music:TBD
- Efficient prediction of the user experience:
 - Music: Motamedi, E., Tkalcic, M., & Szlávik, Z. (2023). Eudaimonic and Hedonic Qualities as Predictors of Music Videos' Relevance to Users: A Human-Centric Study. Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization, 44–49. <u>https://doi.org/10.1145/3563359.3597415</u>

43 CURRENT RESEARCH

• Challenges:

- Unobtrusive acquisition of item characteristics
 - Music: Lyrics (Hrustanović, S., Kavšek, B., & Tkalčič, M. (2021). Recognition of Eudaimonic and Hedonic Qualities from Song Lyrics. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 9.)
 - Movies: Subtitles (Motamedi, E., & Tkalcic, M. (2021). Prediction of Eudaimonic and Hedonic Movie Characteristics From Subtitles. Proceedings of the 6th Human-Computer Interaction Slovenia Conference, 8.)
 - Movies: Multi-modal (Motamedi, Kholg, Saghari, Elahi, Barile, Tkalčič)) Predicting Movies' Eudaimonic and Hedonic Scores: A Machine Learning Approach Using Metadata, Audio and Visual Features (IPM, under review)
- Unobtrusive acquisition of user characteristics
 - Movies: From rating behavior (Motamedi, Elham, Francesco Barile, and Marko Tkalčič. 'Prediction of Eudaimonic and Hedonic Orientation of Movie Watchers'. Applied Sciences 12, no. 19 (22 September 2022): 9500. <u>https://doi.org/10.3390/app12199500</u>.)
 - Music:TBD

- Efficient prediction of the user experience:
 - Music: Motamedi, E., Tkalcic, M., & Szlávik, Z. (2023). Eudaimonic and Hedonic Qualities as Predictors of Music Videos' Relevance to Users: A Human-Centric Study. Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization, 44–49. <u>https://doi.org/10.1145/3563359.3597415</u>

44 OUTLINE

- Personality and Emotions in RecSys
- Current: Positive Psychology in RecSys
- Conclusion

45 CONCLUSION

- Purely behavioral data might lead to inaccurate conclusions
- We need to understand which cognitive processes are driving the behaviour
- Cognitive models improve (certain aspects of) RecSys
- Rich knowledge from psychology can be transferred for explanations
- Lots of work done, still many challenges

Human–Computer Interaction Series

Marko Tkalčić Berardina De Carolis Marco de Gemmis Ante Odić Andrej Košir Editors

Emotions and Personality in Personalized Services

Models, Evaluation and Applications

THANK YOU

HAPPY TO TAKE QUESTIONS

